311 research outputs found

    Embedded Sensor System for Early Pathology Detection in Building Construction

    Get PDF
    Structure pathology detection is an important security task in building construction, which is performed by an operator by looking manually for damages on the materials. This activity could be dangerous if the structure is hidden or difficult to reach. On the other hand, embedded devices and wireless sensor networks (WSN) are becoming popular and cheap, enabling the design of an alternative pathology detection system to monitor structures based on these technologies. This article introduces a ZigBee WSN system, intending to be autonomous, easy to use and with low power consumption. Its functional parts are fully discussed with diagrams, as well as the protocol used to collect samples from sensor nodes. Finally, several tests focused on range and power consumption of our prototype are shown, analysing whether the results obtained were as expected or not

    Chemical Oscillations out of Chemical Noise

    Full text link
    The dynamics of one species chemical kinetics is studied. Chemical reactions are modelled by means of continuous time Markov processes whose probability distribution obeys a suitable master equation. A large deviation theory is formally introduced, which allows developing a Hamiltonian dynamical system able to describe the system dynamics. Using this technique we are able to show that the intrinsic fluctuations, originated in the discrete character of the reagents, may sustain oscillations and chaotic trajectories which are impossible when these fluctuations are disregarded. An important point is that oscillations and chaos appear in systems whose mean-field dynamics has too low a dimensionality for showing such a behavior. In this sense these phenomena are purely induced by noise, which does not limit itself to shifting a bifurcation threshold. On the other hand, they are large deviations of a short transient nature which typically only appear after long waiting times. We also discuss the implications of our results in understanding extinction events in population dynamics models expressed by means of stoichiometric relations

    Geometrical approach to tumor growth

    Full text link
    Tumor growth has a number of features in common with a physical process known as molecular beam epitaxy. Both growth processes are characterized by the constraint of growth development to the body border, and surface diffusion of cells/particles at the growing edge. However, tumor growth implies an approximate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic model was introduced in a former article [C. Escudero, Phys. Rev. E 73, 020902(R) (2006)], and in the present work we extend our analysis and try to shed light on the possible geometrical principles that drive tumor growth. We present two-dimensional models that reproduce the experimental observations, and analyse the unexplored three-dimensional case, for which new conclusions on tumor growth are derived

    Existence results for a fourth order partial differential equation arising in condensed matter physics

    Get PDF
    We study a higher order parabolic partial differential equation that arises in the context of condensed matter physics. It is a fourth order semilinear equation whose nonlinearity is the determinant of the Hessian matrix of the solution. We consider this model in a bounded domain of the real plane and study its stationary solutions both when the geometry of this domain is arbitrary and when it is the unit ball and the solution is radially symmetric. We also consider the initial-boundary value problem for the full parabolic equation. We summarize our results on existence of solutions in these cases and propose an open problem related to the existence of self-similar solutions.Comment: To appear in Mathematica Bohemic

    Two species coagulation approach to consensus by group level interactions

    Get PDF
    We explore the self-organization dynamics of a set of entities by considering the interactions that affect the different subgroups conforming the whole. To this end, we employ the widespread example of coagulation kinetics, and characterize which interaction types lead to consensus formation and which do not, as well as the corresponding different macroscopic patterns. The crucial technical point is extending the usual one species coagulation dynamics to the two species one. This is achieved by means of introducing explicitly solvable kernels which have a clear physical meaning. The corresponding solutions are calculated in the long time limit, in which consensus may or may not be reached. The lack of consensus is characterized by means of scaling limits of the solutions. The possible applications of our results to some topics in which consensus reaching is fundamental, like collective animal motion and opinion spreading dynamics, are also outlined

    Architecture for Multi-Technology Real-Time Location Systems

    Get PDF
    [Abstract]The rising popularity of location-based services has prompted considerable research in the field of indoor location systems. Since there is no single technology to support these systems, it is necessary to consider the fusion of the information coming from heterogeneous sensors. This paper presents a software architecture designed for a hybrid location system where we can merge information from multiple sensor technologies. The architecture was designed to be used by different kinds of actors independently and with mutual transparency: hardware administrators, algorithm developers and user applications. The paper presents the architecture design, work-flow, case study examples and some results to show how different technologies can be exploited to obtain a good estimation of a target position.[Resumen]El aumento de la popularidad de servicios localización-basados ha llevado a una investigación considerable en el campo de los sistemas de localización en interiores. Ya no hay solo tecnología para soportar estos sistemas, es necesario considerar la fusión de la información proveniente de sensores heterogéneos. Este papel presenta una arquitectura de software diseñada para un sistema de localización de híbridos donde nosotros podemos combinar información de múltiples tecnologías de sensor. La arquitectura fue diseñada para ser utilizada por diferentes tipos de actores independientemente y con transparencia mutua: los administradores de hardware, los desarrolladores de algoritmo y aplicaciones de usuario. El documento presenta el diseño de arquitectura, flujo de trabajo, ejemplos de estudios de caso y algunos resultados para mostrar cómo las diferentes tecnologías pueden explotarse para obtener una buena estimación de la posición de destinoMinisterio de Industria, Turismo y Comercio; IPT-020000-2010-35Ministerio de Educación y Ciencia; TEC2010-19545-C04-01Ministerio de Educación y Ciencia; CSD2008-0001
    corecore